

A (6,0), B(0,-8)

1) Draw \overline{AB} 2) Sind its midpoint

3) Sind its slope

4) Sind distance from A to B. $\frac{Run}{4} = \frac{8}{6}$ $\frac{Run}{4} = \frac{8}{6}$ $\frac{Run}{4} = \frac{8}{6}$ $\frac{Run}{4} = \frac{8}{6}$ $\frac{M(0+6)^{2}}{2}, \frac{-8+0}{2}$ $\frac{M(0+6)^{2}}{2}, \frac{-8+0}{2}$ $\frac{M(3,-4)}{2}$ $\frac{M(3,-4)}{2}$

Find the distance from (x_1y_1) To (h,k)(h,k) $A = \int (x-h)^2 + (y-k)^2$ To remove the radical, we can square both sides $A = \int (x-h)^2 + (y-k)^2$ $A = \int (x-h)^2 + (y-k)^2$ To remove the radical, we can square both sides $A = \int (x-h)^2 + (y-k)^2 + \int (x-h)^2 + \int (x-h)^$

Every Function is a relation.

Not every relation is a function.

To determine whether a graph is a function or not, we use vertical line test

(x,y) (x,yz) (x,yz)

Same x, Different Y's.

Not a function.

$$\frac{1}{3}(x) = \frac{1}{3} \frac{1}{3}$$

$$\frac{1}$$

Some Special functions

1) Constant Function
$$S(x) = b$$

3) Polynomial Function
$$f(x) = \alpha_n \chi^n + \alpha_{n-1} \chi^{n-1} + \cdots$$

4) Rational function
$$f(x) = \frac{\text{Polynomial}}{\text{Polynomial}}$$

$$\frac{1}{2}(x) = \sqrt{x} + 2$$

we cannot take square-root of negative

numbers, therefore $x \ge 0$

 $x \geq 0$ Domain $[0, \infty)$

$$f(1) = \sqrt{1} + 2 = 3$$

$$f(9) = \sqrt{9} + 2 = 5$$

 $f(x) = 4 - x^2$ Polynomial Sunction,

f(0)=4 f(2)=0 We can use any value for x.

$$C(1)=3$$

Domain:
$$(-\infty, \infty)$$

f(1)=3 f(-2)=0

$$f(-1)=3$$
 $f(3)=-5$

$$\int (3) = -5$$

$$\begin{aligned}
f(x) &= \chi^{2} \\
find \\
f(4), & f(x+h), & and & f(3x) \\
f(4) &= 4^{2} = 16
\end{aligned}$$

$$\begin{aligned}
f(x+h) &= (x+h)^{2} \\
&= (x+h)(x+h) \\
&= \chi^{2} + 2xh + h^{2}
\end{aligned}$$

$$\frac{f(x)=3x-2}{find}$$
1) $f(x+h)=3(x+h)-2=3x+3h-2$
2) Simplify
$$\frac{f(x+h)-f(x)}{h}$$

$$=\frac{3x+3h-2-3x+2}{h}=\frac{3h}{h}=B$$

$$f(x) = 2x - 5$$

Linear Function $(-\infty, \infty)$

$$h(x)=\frac{x-2}{2+5}$$

Rational Function

All reals except -5

$$g(x) = -8$$
Constant Function
$$(-\infty, \infty)$$

$$k(x) = \frac{x}{x^2 - 9}$$

Rational function

All Reals except ±3

$$\frac{f(x)}{x^{2}} = \frac{x+4}{x^{2}-4x-12} \quad \text{and then discuss domain.}$$

$$\frac{f(0)}{x^{2}-4(0)-12} = \frac{4}{-12}$$

$$\frac{f(0)}{x^{2}-4(0)-12} = \frac{4}$$

$$f(x) = x^{2} + 5$$

$$f(x) = x^{2} + 4x + 4 - 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 4 + 9$$

$$f(x) = x^{2} + 4x + 9$$

$$\int (x) = \frac{x^2 - 4}{x^2 - 5x + 6}$$

$$find f(2) = \frac{2^2 - 4}{2^2 - 5(2) + 6} = \frac{0}{0}$$

Indeterminate form

this concept along with Some condition is used in Calc.
Sor limits.

Simplify
$$f(x)$$

$$= \frac{(x+2)(x-2)}{(x-3)(x-2)} = \frac{x+2}{x-3}$$
Now find $f(z)$

 $f(2) = \frac{2+2}{2-3} = \frac{4}{-1} = -4$

Looking Ahead:

$$n! = n (n-1)(n-2)....3.2.1$$

Simplify
$$\frac{8!}{5! \cdot 3!} = \frac{8 \cdot 7 \cdot \cancel{8} \cdot \cancel{5}!}{5! \cdot 3!} = \frac{7!}{5!}$$

Combination formula $\sqrt{C_r} = \frac{n!}{r! \cdot (n-r)!}$

Find $\sqrt{C_3} = \frac{7!}{3! \cdot (7-3)!}$

$$= \frac{7!}{3! \cdot 4!}$$

$$= \frac{7 \cdot \cancel{8} \cdot 5 \cdot \cancel{4}!}{3 \cdot 2 \cdot 1 \cdot \cancel{4}!}$$

$$= \frac{7 \cdot \cancel{8} \cdot 5 \cdot \cancel{4}!}{3 \cdot 2 \cdot 1 \cdot \cancel{4}!}$$

Permutation formula
$$n^{p} = \frac{m!}{8!}$$

$$= \frac{8!}{5!}$$

$$= \frac{8!}{5!}$$

$$= \frac{8!}{5!}$$

$$= \frac{336}{336}$$