Math 25
Fall 2017
Lecture 1


Rahim Faradineh
$r$ faradineh @ gmail.com

$$
323-260-8129
$$

www. my math classes. com

I started chaffer college

$$
\text { Fall } 1992 .
$$

Math 25
College Algebra
Saturdays 8:00-11:50 AM office hours 7:30-8:00 in our classroom.

Rectangular Coordinate system

ordered-Pair

$$
\begin{aligned}
& \quad(x, y) \\
& \text { Plot }(2,5) \\
& \text { Plot }(-6,-1)
\end{aligned}
$$

Draw $\overline{A B}$ where $A(-7,3)$ i $B(5,-3)$


Midpoint $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ distance

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Slope $m=\frac{3-(-3)}{-7-5}=\frac{6}{-12}=\frac{-1}{2}$ Run
distance $\quad d=\sqrt{(-7-5)^{2}+(3--3)^{2}}=\sqrt{(-12)^{2}+6^{2}}=\sqrt{144+36}=\sqrt{180}$

$$
A(6,0), B(0,-8)
$$

1) Draw $\overline{A B}$
2) find its midpoint
3) find its slope

4) find distance from $A$ to $B$.

$$
\begin{aligned}
d=\sqrt{(0-6)^{2}+(-8-0)^{2}} & =\sqrt{(-6)^{2}+(-8)^{2}} \\
& =\sqrt{100}=10
\end{aligned}
$$

find the distance from $(x, y) T_{0}(h, k)$

$$
\stackrel{C}{(h, k)} \longrightarrow d=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

If we assume that $r$ is the distance,

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

To remove the radical, we can square both sides.

$$
\begin{gathered}
r^{2}=(x-h)^{2}+(y-k)^{2} \quad \rightarrow \begin{array}{l}
\text { Circle } \\
\text { Centered at } \\
(x-h)^{2}+(y-k)^{2}=r^{2}
\end{array} \quad \begin{array}{c}
(h, k) \\
\text { with radius } r .
\end{array}
\end{gathered}
$$



$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Consider

$$
\begin{gathered}
x^{2}+y^{2}=16 \\
(x-0)^{2}+(y-0)^{2}=4^{2}
\end{gathered}
$$

Center $(0,0), r=4$
Domain $\rightarrow x$-values
Range $\rightarrow y$-Values

$$
\begin{aligned}
& D:[-4,4] \\
& R:[-4,4]
\end{aligned}
$$

Consider $(x+3)^{2}+(y-4)^{2}=25$

1) Center $(-3,4)$
2) Radius $r=5$
3) Draw it.
4) Domain
5) Range


Relations: It is a relationship that exists for a set of ordered-Pairs

$$
\{(1,2),(3,-5),(7,0)\} \quad \begin{aligned}
& \text { Domain }\{1,3,7\} \\
& \text { Range }\{2,-5,0\}
\end{aligned}
$$



Consider $\{(2,-3),(1,5),(2,4),(0,0)\}$

$$
\begin{aligned}
& D:\{2,1,0\} \\
& R:\{-3,5,4,0\}
\end{aligned}
$$

whenever any value from the domain matches with one element from the range, then our relation is called a function.


Every function is a relation.
Not every relation is a function.
To determine whether a graph is a function or not, we use vertical line test


Same $x$, Different $Y^{\prime}$ s. Not a function.

(1) function or not?

Explain, Function, by V.L.T.
(2) Domain $[-6,5]$
(3) Range $[-3,9]$
(4) Any intercepts

$$
\begin{aligned}
& x \text {-Int }(-3,0) \\
& y \text {-Int }(0,2)
\end{aligned}
$$


(1) function or not?

Reason function, V.L.T.
(2) Domain $(-7,8]$
(3) Range

$$
[-2,5)
$$

(4) All intercepts $Y$-Int

$$
x \text {-Int }(-4,0),(4,0)(0,4)
$$

(5) Shift this graph 2 units up, draw.

Recall $3 x-5 y=10$ Equation of a line

Isolate $y$
Graph it


$$
-5 y=-3 x+10
$$

$$
y=\frac{-3}{-5} x+\frac{10}{-5}
$$

$y=\frac{3}{5} x-2$

$$
y=m x+b
$$

$$
m=\frac{3}{5} \quad Y \text {-Int }(0,-2)
$$

slope -Int form
$f(x)=\frac{3}{5} x-2$ we have function notation.

$$
f(x)=x^{2}-4 x
$$

find $f(0), f(2), f(-2)$

$$
\begin{aligned}
& f(0)=0^{2}-4(0)=0 \Rightarrow(0,0) \\
& f(2)=2^{2}-4(2)=4-8=-4 \Rightarrow(2,-4) \\
& f(-2)=(-2)^{2}-4(-2)=4+8=12 \Rightarrow(-2,12) \\
& \begin{array}{ll}
f(x)=\frac{x+3}{x-2} \quad \text { find } \quad f(0), f(2), \text { and } f(-3) \\
f(0)=\frac{0+3}{0-2}=\frac{-3}{2} \quad f(2)=\frac{2+3}{2-2}=\frac{5}{0} \quad f(-3)=\frac{-3+3}{-3-2} \\
\quad \text { undefined } & =\frac{0}{-5}=0
\end{array}
\end{aligned}
$$

Some Special functions

1) Constant function $f(x)=b$
2) Linear function $f(x)=m x+b$
3) Polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots
$$

4) Rational function

$$
f(x)=\frac{\text { Polynomial }}{\text { Polynomial }}
$$

5) Squave-Root function $f(x)=\sqrt{x}$
6) Absolute value function $f(x)=|x|$

$$
f(x)=\sqrt{x}+2
$$

we cannot take square-root of negative numbers, therefore $x \geq 0$ Domain

$$
[0, \infty)
$$

$$
\begin{aligned}
& f(0)=\sqrt{0}+2=2 \\
& f(1)=\sqrt{1}+2=3 \\
& f(4)=\sqrt{4}+2=4 \\
& f(9)=\sqrt{9}+2=5
\end{aligned}
$$


$f(x)=|x|-4$ we can take abs. Value of any number $\Rightarrow$ Domain

$$
\begin{array}{ll}
f(0)=-4 & f(-2)=-2 \\
f(2)=-2 & f(-4)=0 \\
f(4)=0 & f(5)=1 \\
& f(-5)=1
\end{array}
$$


$f(x)=4-x^{2} \quad$ Polynomial function, $f(0)=4 \quad f(2)=0$ we can use any value for $x$.

$$
\begin{array}{ll}
f(1)=3 & f(-2)=0 \\
f(-1)=3 & f(3)=-5 \\
& f(-3)=-5
\end{array}
$$

Domain: $(-\infty, \infty)$


Consider the graph below


1) function or not? function
2) Domain Ė Range $[-5,2] \quad[0,7]$
3) All intercepts $x$-Int $(-3,0), Y$-Int $(0,3)$
4) shift the graph 3 units to the right, and then 5 units down.

$$
f(x)=x^{2}
$$

find
$f(4), f(x+h)$, and $f(3 x)$

$$
\begin{array}{rlrl}
f(4)=4^{2}=16 & f(x+h) & =(x+h)^{2} \\
& =(x+h)(x+h) \\
f(3 x)=(3 x)^{2} & & =x^{2}+2 x h+h^{2}
\end{array}
$$

$$
f(x)=3 x-2
$$

find

1) $f(x+h)=3(x+h)-2=3 x+3 h-2$
2) Simplify $\frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\frac{3 x+3 h-2-(3 x-2)}{h} \\
& =\frac{3 x+3 h-2-3 x+2}{h}=\frac{3 h}{h}=3
\end{aligned}
$$

find the domain

$$
f(x)=2 x-5
$$

Linear function

$$
(-\infty, \infty)
$$

$$
h(x)=\frac{x-2}{x+5}
$$

Rational function

$$
\begin{array}{r}
x+5 \neq 0 \\
x \neq-5
\end{array}
$$

All reals except -5

$$
g(x)=-8
$$

Constant function

$$
\begin{gathered}
(-\infty, \infty) \\
k(x)=\frac{x}{x^{2}-9}
\end{gathered}
$$

Rational function

$$
\begin{aligned}
& x^{2}-9 \neq 0 \\
& x^{2} \neq 9 \\
& x \neq \pm 3
\end{aligned}
$$

All Reals except $\pm 3$

$$
\begin{aligned}
& f(x)=\frac{x+4}{x^{2}-4 x-12} \quad \text { find } \quad f(0), f(-4), \\
& f(0)=\frac{0+4}{0^{2}-4(0)-12}=\frac{4}{-12} \quad\left\{\begin{array}{l}
\text { and then discuss domain. } \\
x^{2}-4 x-12 \neq 0 \\
\left(x-\frac{-1}{3} \quad f(-4)=\frac{-4+4}{(-4)^{2}-4(-4)-12}=\frac{0}{20}=0 \quad\left\{\begin{array}{l}
\text { function } \\
(x+6) \neq 6 \\
x \neq 1
\end{array}\right.\right.
\end{array} \begin{array}{l}
x \neq-2
\end{array}\right.
\end{aligned}
$$

Domain: All Reals except

$$
6 \dot{\varepsilon}-2
$$

$$
\begin{array}{ll}
f(x)=\frac{\sqrt{x}^{0}-2}{x^{2}+2 x+2} \\
f(0)=-1 & \begin{array}{l}
\text { find } \\
f(0), f(4), \text { Discuss } \\
f(4)=0
\end{array} \\
& \left.\begin{array}{l}
\text { domain. } \\
x^{2}+2 x(+2) \neq 0, \text { Also } \\
x^{2}+2 x+1
\end{array}\right) \\
& \begin{array}{l}
(x+1)^{2}+1 \neq 0 \\
\text { No real Solution }
\end{array} \\
& {[0, \infty) \quad 0}
\end{array}
$$

Graph below belongs to
D: $(-\infty, \infty)$

$$
f(x)=6 x-x^{2}
$$

Polynomial function


Secant line, findits slope $m=\frac{8-(-7)}{4-(-1)}$

$$
=\frac{15}{5}=3
$$



$$
\begin{aligned}
& f(x)=x^{2}+5 \quad f(2)=2^{2}+5=9 \\
& \text { find } f(2), f(x+2) \quad f(x+2)=(x+2)^{2}+5 \\
&=x^{2}+4 x+4+5 \\
&=x^{2}+4 x+9 \\
& \text { Compute } \frac{f(x+2)-f(2)}{x} \\
&=\frac{x^{2}+4 x+9-9}{x}=\frac{x^{2}+4 x}{x}=\frac{\not x(x+4)}{\not x} \\
&=x+4
\end{aligned}
$$



$$
f(x)=\sqrt{x}
$$

find $f(h+4), f(4) \quad 5=\sqrt{25}=\sqrt{16+9}$

$$
\begin{aligned}
& =\sqrt{h+4} \quad=2 \quad \neq \sqrt{16}+\sqrt{9}=4+3 \\
& \begin{array}{l}
\text { Compute } \\
\dot{\text { simplify }}
\end{array} \frac{f(h+4)-f(4)}{h}=\frac{\sqrt{h+4}-2}{h}= \\
& \frac{=\frac{\sqrt{h+4}-2}{(A-B)(A+B)=A^{2}-B^{2}} \cdot \frac{\sqrt{h+4}+2}{\sqrt{h+4}+2}=\frac{(\sqrt{h+4})^{2}-(2)^{2}}{h(\sqrt{h+4}+2)} \text { 1 }}{(1} \\
& =\frac{x+y-4}{x(\sqrt{h+4}+2)}=\frac{1}{\sqrt{h+4}+2}
\end{aligned}
$$

$$
f(x)=\frac{x^{2}-4}{x^{2}-5 x+6} \quad \text { find } \quad f(2)=\frac{2^{2}-4}{2^{2}-5(2)+6}=\frac{0}{0}
$$

Indeterminate form
this concept along with Some condition is used in Calc.
for limits.

Simplify $f(x)$

$$
=\frac{(x+2)(x-2)}{(x-3)(x-2)}=\frac{x+2}{x-3}
$$

Now find $f(2)$

$$
f(2)=\frac{2+2}{2-3}=\frac{4}{-1}=-4
$$

Looking Ahead:
$n!$

$$
n!=n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1
$$

"n factorial"

$$
\begin{aligned}
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
& 8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=
\end{aligned}
$$

By Definition $0!=1$
Simplify $\frac{7!}{5!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=42$

$$
\text { Simplify } \frac{8!}{5!\cdot 3!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1}=56
$$

Combination formula $\quad n^{C_{r}}=\frac{n!}{r!\cdot(n-r)!}$
Find $7 C_{3}$

$$
\begin{align*}
7_{3} C_{3} & =\frac{7!}{3!\cdot(7-3)!} \\
& =\frac{7!}{3!\cdot 4!} \\
& =\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!}
\end{align*}
$$

$$
\begin{aligned}
{ }_{50} C_{5}=\frac{50!}{5!\cdot(50-5)!} & =\frac{50!}{5!\cdot 45!} \\
& =\frac{10 \cdot 294 \cdot 4 \cdot 47 \cdot 46 \cdot 45!}{5 \cdot 4 \cdot 7 \cdot x \cdot 1 \cdot 45!} \\
& =10 \cdot 49 \cdot 2 \cdot 47 \cdot 46 \\
& =2,118,760
\end{aligned}
$$

Permutation formula

$$
\begin{aligned}
n^{P_{r}} & =\frac{n!}{(n-r)!} \\
8^{P_{3}} & =\frac{8!}{(8-3)!} \\
& =\frac{8!}{5!} \\
& =\frac{8 \cdot 7 \cdot 6.5!}{5!} \\
& =336
\end{aligned}
$$

